Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Min Shi,* Zhe Liu, Jian Jun Lu and Lian Dong Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.043$
$w R$ factor $=0.124$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquadiisothiocyanatobis(pyridine \boldsymbol{N}-oxide)cobalt(II)

In the title mononuclear complex, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], cobalt(II) has a distorted octahedral coordination formed by two N atoms from two thiocyanate anions and four O atoms from two water molecules and two pyridine N-oxide molecules. The complexes are connected to each other by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Comment

Fig. 1 shows the title complex, (I), in which atom Co 1 is coordinated by two N atoms from thiocyanate anions and four O atoms from two water molecules and two pyridine N -oxide molecules. As indicated in Fig. 1, atom Co1 has a distorted octahedral coordination. Various hydrogen bonds (Table 1 and Fig. 2) help to stabilize the crystal packing. The coordinated water molecule O 2 forms two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds to N oxide O -atom acceptors. The coordinated water molecule O 1 forms $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ bonds, the acceptor O atom being the O atom of the pyridine N-oxide.

(I)

Experimental

Pyridine N-oxide ($0.0639 \mathrm{~g}, 0.672 \mathrm{mmol}$) was added to an aqueous solution (12 ml) containing $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1253 \mathrm{~g}, 0.342 \mathrm{mmol})$ and sodium thiocyanate ($0.0562 \mathrm{~g}, 0.693 \mathrm{mmol}$), and the solution was stirred for a few minutes. Pink single crystals of (I) were obtained after the solution had been allowed to stand at room temperature for three weeks.

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$Z=2$
$M_{r}=401.32$	$D_{x}=1.598 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=5.4773(15) \AA$	Cell parameters from 1753
$b=11.326(3) \AA$	reflections
$c=13.726(4) \AA$	$\theta=2.4-26.3^{\circ}$
$\alpha=86.366(4)^{\circ}$	$\mu=1.30 \mathrm{~mm}^{-1}$
$\beta=78.985(4)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=88.921(4)^{\circ}$	Prism, pink
$V=834.1(4) \AA^{\circ}$	$0.20 \times 0.09 \times 0.08 \mathrm{~mm}$

Received 14 April 2005 Accepted 10 May 2005 Online 14 May 2005

Figure 1
View of (I), showing 30% displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.781, T_{\text {max }}=0.903$
4291 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.046 P)^{2}\right. \\
& +1.1096 P]
\end{aligned}
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.124$
$S=1.14$
2892 reflections
212 parameters
H -atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H11 $\cdots \mathrm{S}^{\mathrm{i}}$	0.87	2.59	$3.433(3)$	164
O1-H12 $^{\mathrm{i}} \mathrm{O}^{\mathrm{i}}$	0.89	1.87	$2.753(4)$	175
O2-H14 $^{\mathrm{i}} \mathrm{O}^{\mathrm{i}}$	0.99	1.86	$2.833(4)$	165
${\text { O2-H13 } \cdots \text { O3 }^{\text {ii }}}^{2}$	0.71	2.23	$2.901(4)$	157

[^0]

Figure 2
Hydrogen bonds (shown as broken lines) between the complex molecules. Symmetry codes are as in Table 1.

H atoms bonded to C atoms were included in calculated positions. Other H atoms were located in a difference map. All H atoms were refined using a riding model $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$; $\mathrm{O}-\mathrm{H}=0.71-0.99 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (No. 20271043) and the Natural Science Foundation of Shandong Province of China (No. Y2002B10) for support.

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, 1-y, 1-z$.

